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The dynamic aeroelastic instability of flutter is an important factor in the design of modern

high-speed, flexible aircraft. The current trend is toward the creative use of composites to delay

flutter. To obtain an optimum design, we need a accurate as well as efficient model. As a first

step towards this goal, flutter analysis is carried out for an unswept composite box beam using

a linear structural model and Theodorsen's unsteady aerodynamic theory. Structurally, the wing

was modeled as a thin-walled box-beam of rectangular cross section. Theodorsen's theory was used

to get 2-D unsteady aerodynamic forces, which were integrated over the span. A free-vibration

analysis is carried out using the theory of Ref. [4]. These fundamental modes are used to get the

flutter solution using the V-g method. Future work is intended to build on this foundation.

Structural Preliminaries

A thin-walled box beam is considered for the analysis. A coordinate system _ = {_1 :_2 x_} is

defined along the undeformed wing with 41 along the elastic axis.

The displacements, rotations, strains and curvatures are denoted by u, 8, "y and s respectively

{e}u= u2 0= 02 7= 2_12 s= s2

us Os 2_/lS _s

Transverse shear deformations are negligible, so that 712, _/ls = 0. Thus

Rotations are small, so that

_= 0 = 0

0 0

(1)

(2)

B= -u s ands= - _ (3)

Using the theory developed by Badir et.al. (1992) we get a constitutive equation of the form

M1 = |CI_, C22 C_ C_ _ (4)
M= |C13 C=3
M3 LC14 C_ C_ C,.

where F is the force along the wing and M1, M2, M_ arc the torsional and two bending moments.

The [C]4×4 is the cross sectional stiffness matrix and is obtained using the theory.
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Energy Formulation and Raleigh Ritz Method

Langrange equations of motion can be written in terms of the kinetic energy (T) and the strain

energy (U) as

0 (O(T - U)) O(T - U) = Q (5)at \ -0_ aq,

Kinetic energy is given by

(6)

where m is the mass per unit lenth, _ is a matrix of center of mass offset from the elastic axis and

i is the matrix of polar moment of inertia. For our problem Eq. (6) becomes

{/.1 }r
1 fo _ e_T = _ -/.3

m 0 0 0

o i -,_ -,_
0 -m_2 m 0

0 -m_3 0 m
--/*3

/*2

_, (_')

Strain energy is given by
1 1

so that

_ [o12o=2o2=°=, _w,gd=l
u_ [C]a o2, c_, o.

(8)

(0)

Now generalized coordinates are introduced to make it a finite dimensional system. We represent

the deflections u and 9 with finite number of modeshapes yielding

o, = [0]{q}
--1/3

'U2

(lO)

where

0 {¢01},×o 0 (11)
[¢]= 0 0 {¢.,),x,

0 o 0 {¢_2}1x_
Here n,o,p,q are the number of extentional, torsional, vertical bending, and inplane bending modes,

respectively. Thus, we also have

(12)
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where

o o i]o {¢_,},xo o (13)[¢'*]-- o o _¢"},,,,,
t U3

o o o {¢_,},x,J
Substituting Eq. (10) and Eq. (12)in the kineticand strainenergy expressionsgiven by Eq. (7)

and Eq. (9),the Lagrange's equations can be expressed as

[M]{_} + [KI{q} = {Q} (14)

where

i 0 0 0[M] = Ju [¢]T -m_2 m 0

-m_3 0 m

[¢]dx, (15)

FC,, C,2 C13 C.']

[K]= ]o'[_'F [c,2 c22 c2_ c,,/[¢*]_=,
/C,3 C2n C33 C_|
[C,4 Cu C_ C. J

(16)

Calculation of {Q} will be discussed later.

For the present analysis, n extensional, 0 torsional, p vertical bending and q inplane bending un-

coupled modes are taken as {¢ul}'s, {¢0,}'s, {¢_}'s and {¢u2}'s respectively. Analytic expressions

for the modes were taken from Ref. [2]. Analytic expressions for the above integrals were derived
for the case of uniform cross section beams.

Free vibration analysis

For free vibration analysis, {Q} - 0, thus Eq. (14) becomes

[M]{(_} + [Kl{q } = 0 (17)

Now assuminq simple harmonic motion, i.e. {q} = {_}e _t, we get an eigenvalue problem, whose

eigenvalues give the frequencies and eigenvectors the modeshapes of vibration.

[K]{¢} = w2[M]{#} (18)

Given below is a comparison of free-vibration frequencies of a Bending-Twist Coupled Beam with

experimental values. A graphite epoxy cantilever plate beam is considered. The results validate

the free-vibration analysis code.
Mode

1B 3.6

2B 24.2

3B 66.5

4B 124

Experimental Numerical

3.6

22.6

63.3

124



Coordinate Transformations

Aeroelastic analyses using simple structural models have traditionally relied upon aerodynamic

variables such as angle of attack (a) and plunging motion (h) to describe the aerodynamic forces on

the airfoil. Because the present analysis incorporates a more sophisticated structural model, it was

found to be more convenient to express the aerodynamic parameters in terms of the wing kinematic

variables.

The wing section has an an_e of attack a in a uniform freestream of velocity^U. The reference

frame a is oriented such that U = -Uh2 (see Figure 1). The reference frame b is oriented with

respect to the undeformed wing section and is centered at the section reference line. Thus, it is the

same as the structural coordinate system $_, i.e. bi - _i. The reference frame/} is a small angle

transformation with respect to b caused by deformation of the section such that

{01} (19)

The section of the undeformed beam is rotated at a steady-state angle of attack ao from the

freestream such that the transformation from a to b is

[10 01{,l}= 0 coSC o sinO o
b3 0 - sin ao cos So J a3

(20)

In this analysis, we assume that the steady-state angle of attack is small (i.e. the same order of

magnitude as the angles in Eq. 19). This allows us to make the approximations

cos so = 1 and sin So = So. (21)

•Combining Eq. (19), Eq. (20) and Eq. (21), and discarding the higher order terms, the transfor-
mation between the freestream reference frame and the deformed beam sectional reference frame

02 = I So+ 01 a2
B3 L-u_ -(eXo + 01) I az

This transformation shows the section angle of attack as a function of time to be

a(t) = ao + O,(t) (23)

The deflections u_ along the undeformed reference axes _. are also expressed in terms of the

freestream reference frame a. Carrying through the small angles assumption of Eq. (21) and as-

suming the displacements also to be small, it can be verified that

u,_ = uibi _ u_ai (24)

This is a gross approximation, but it is allowed in this analysis because the small angle and

small displacement assumptions are within the limitations of Theodorsen's theory. From Eq. (24),

the section plunging motion is

h = -u3. (25)



Development of Generalized Aerodynamic Forces

Lagrange's equations were developed from kinetic and strain energy formulations for a uniform,

cantilevered, thin-walled, closed-section beam and are given by

M_] + Kq = Q (26)

where M is the n x n generalized mass matrix, K is the n x n generalized stiffness matrix, Q is the

n x 1 generalized force vector, and q are the generalized coordinates. There are two components

of the generalized forces that must be considered in the flutter analysis: the aerodynamic loadings

and the structural damping. This analysis uses 2-dimensional incompressible strip theory to obtain

the aerodynamic loadings. The effect of structural damping is introduced artificially using the Vog

method, as will be discussed in a later section.

The vector of generalized aerodynamic forces is developed in from the principle of virtual work.

The virtual work done on a two-dimensional airfoil section is expressed as:

 vw= (£+ (27)

where f_,/_ and/_ are the section lift, drag and moment, respectively; 6_'is the virtual displacement

vector, and 6_ is the virtual rotation vector:

[ JB3

The aerodynamic loadings are calculated with respect to the freestream reference frame 5 and

about the midchord, such that f_ = L53,/_ = -D52 and M = M5I. The reference line offset from

the midchord is baB2. The virtual work can be rewritten using Eq. (28) in terms of the virtual

displacements and the virtual rotation about the reference line:

"_ ._ pT 5U + R T 5u' (29)

where P and R are 4 x 1 column matrices and

/6ul }

601
$u = -6u3

6u2

and
6u' = -6u_

The virtual work can be expressed in terms of generalized coordinates, using the expansion

= cq (30)

where • is the modal matrix and q is the generalized coordinate vector. The virtual work in terms

of generalized coordinates is
TOU TOU '

6w= e Neq+ R Neq
or, from Eq. (30),

6"e = (pT_p _{_RTc_,)6q



The coefficient of 5q is the transpose of the generalized aerodynamic forces on the section. Inte-

grating over the wing span, we obtain the generalized aerodyanmic forces as

Q = -/0/" (_Tp -'F #prT R) d.x

The elements of P and R axe, in terms of the lift, drag and moment,

P_ =0 R1 =0

P2 --- M + baL + baD(ao + 81) R2 =0

Ps =-L R3 =-Mu_

P4 "" -D R_ = baDu_ - baLu' a - Mu'a

(31)

(32)

2-Dimensional Strip Theory (Theodorsen)

Expressions for the unsteady aerodynamic lift and moment on an airfoil were initially developed by

Theodorsen. Assuming simple harmonic motion the total lift and moment can be expressed as

L = Lo + Le _t
M = M0 + -hT/e_'n (33)

here Lo and Mo are the steady components of the lift and moment associated with the steady-

state angle of attack ao; L and hT/axe the complex magnitudes of the unsteady lift and moment,

respectively; and w is the natural frequency. The steady components of the aerodynamic loadings

are given from Ref. [1] in terms of reduced frequency k = wb/U as

pb3w 2

Lo = k----"-c-cto

Pb4w2 (34)
Mo = k---i--_o

In these equations, p is the air density and b is the semichord. Because this flutter analysis is but

a first attempt using a primitive aerodynamic theory, the steady lift and moment coefficients axe

assumed to be those of a thin syrmnetric airfoil, i.e.

cto = 2rao and c,,o = lrao (35)

The unsteady components of the lift and moment are derived from the complex magnitudes of

the lift and moment coefficients in Ref. [1] for the case of simple harmonic pitching and plunging

motions. These unsteady loadings axe:

1 a)Lh]d_}

,ff/I = rpb4w2{[M^ - 1L "f_ 5L,. _(_l 15 hJ-_ + iMp. - + a)(Mh -- 1Lh)](_} (36)

The coefficients L_, Lh, M_ and Mh are functions of reduced frequency k and the Theodorsen

function C(k), and axe given from Ref. [1] as

i
L.. = _-_(l+2C(k))-_C(k) M_ = i i (37)
Lh 1 -- _C(k) Mh "_
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The total lift and moment can be written in terms of the kinematic variables by recognizing

that, from Eq. (23) and Eq. (25)

Also, in accord with the assumption of simple harmonic motion,

u3=fi3e #l= le

Expressions for the total lift and moment are thus

1 a)Lh]01}2rpbaU_2k2ao - _rpb3w2{ - Lh b + [La- (2 +

7rpb4w 2 rpb4w2 { [Mh 1 _ .-u3
k2 _o + -- 5LhJ-_

1 1 _ )1L.)]O -+[Ms- _L, - (_ + a)(Mh -

(38)

The drag on the airfoil section is developed by introducing the small perturbations in velocity

and angle of attack into the equation

D = pbU2co(a) (39)

From the geometery and noting the approximations made in Eq. (24) and Eq. (23), the velocity is

U + u2 and the angle of attack is _ = so + 01. The velocity U is expressed in terms of reduced

frequency k. In addition, it is recognized that, for simple harmonic motion,

'U,2 = iu,ru2e _t =/,u_2

Substituting these perturbations into Eq. (39) and using a Taylor series expansion, the linear

approximation of the unsteady section drag is:

pbaw 2 pbaJ dCD 2ipb2w 2
D = k2 CD(O_o) "_- k2 -_ ,[ooOl -}- TCD(Oto)U2 (40)

The generalized unsteady aerdynamic forces are obtained by substituting Eq. (38) and Eq. (40)

into the relations for P and R in Eq. (32), and subsequently integrating Eq. (31). Neglecting

higher-order terms, the non-zero elements of P and R become

P2

o+M,..- +a Mh+-_

+r_pb3w_ [(l + a) Lh - Mh

lrpb4w 2 [ aCD(Oto)4 k2 1 + 2a + _r ao

2ipabSw2 Co ( ao)ao
ua + u2

k

(41)



P_

/r,ob4oj2(_ o
/h=

k2

=
k2

pbS_2_o t 2id?_%o(ao) dos_co(ao)

4
mb%2¢_(_o) ,

The natural frequency term w 2 can be factored out of each term in the above expressions, and these

forces can be rewritten in the matrix form

P = w_Au + w2B R = w2Du ' (42)

The 4 x 4 matrices A and D and the 4 x 1 column vector B are shown in the appendix. Using

the modal expansion in equation (30) and substituting the above expressions into Eq. (31), the

generalized aerodynamic forces become:

--- cos {foL _p,TD_p, ) dx} o.I2 [ _#TBdx (43)Q (¢TA_ + q + J° z'

Equations of Motion

Analysis of the flutter problem is greatly simplified when the mass matrix M in Eq. (26) is a

diagonal matrix. The mass matrix in our analysis, however, contains off-diagonal terms that account

for inertial couplings in the beam that arise when the center of mass does not coincide with the

reference line. To solve this problem, the equations of motion in Eq. (26) can be recast in terms of

a diagonalized mass matrix. To do this we consider the problem of the wing in free vibration

M_ + Kq = 0 (44)

The eigenvectors _ and eigenvalues coI of this problem are obtained and used to simplify the

equations of motion in the flutter problem. The mass and stiffness matricies can be pre- and

post-multiplied by the n x n eigenvector matrix T, where

"r=[+, +_ ... +.1

such that

TT MT_ + TTKTq = 0

The matrix M D = TTMT is the diagonalized mass matrix, and the matrix K D = TTKT is the

diagonalized stiffness matrix. From the solution of equation (44), it can be seen that

K o = W2R_M o

Here we have introduced a reference frequency wa that will ultimately simplify the flutter equa-

tion. This reference frequency is arbitrary, and is traditionally taken to be the natural frequency

of the wing in the first torsion mode. The n x n matrix 12 contains the free vibration natural

(_2 0 ... 0_ORJ

wa 2 00 (_)
: : ".. !

• _ 2o o (_,)

frequencies in the following form:
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This diagonalization technique isapplied to the equations of motion for the flutterproblem.

Using the eigenvectors and eigenvaluesfrom the free vibration problem of Eq. (44), Lagrange's

equations (26) become

+ Cg2R_MDq _ W2_q = _2TT fO I"_pT B dx (45)MDti

where T. is the generalized aerodynamic forces from Eq. (43) premu]tiplied by the transpose of the

eigenvector matrix such that

j_ob-" T T (¢_rA¢ + ¢I,'TD¢I,) dr,

Structural Damping

As pointed out in Bisplinghoff,Ashley and HaLfman [1],a flutteranalysis cannot provide accurate

resultswithout accounting for the effectsof structuraldamping in some fashion. In flutterspecifi-

cally,structuraldamping isthe only mechanism through which energy isremoved from the wing. A

precisedescriptionof the structuraldamping in the wing isdifficultto obtain; however, since itis

small compared to the aerodynamic loadings,itispossibleto approximate the structuraldamping

by an artificialdamping force.To characterizethisartificialdamping force,consider a singledegree

of freedom system undergoing the simple harmonic motion

X = x0e _'¢

A viscous damping forceopposing thismotion could be

a_

FD = - f -_ = - f i_xoe _t

The viscous damping force in this example lags the position vector by 90 ° and has an amplitude

that depends on the frequency. The structural damping in the flutter problem is known to be

frequency independent, so the viscous damping model is not a valid approximation in toto. It does

show, however, the presence of a phase shift between the motion and the corresponding damping

force.

In the motion of a beam element in free vibration, an artificial structural damping can be

associated with each elastic restoring force and torque by multiplying the restoring force by a small,

artificial damping coefficient g_ associated with each motion. In terms of generalized coordinates,

this artificial damping force can be defined from Eq. (44) as

MD

M D
E'=-iG "'*_ w_O

or, in matrix form,

gl 0 ... 0 ]

G= g2 0
: !

o g.

where

(46)



The coefficientsgi have absolutely no physical meaning. The flutter condition occurs when one

of these coefficients goes to zero in the flutter equation. Because the structural damping effects are

small in comparison with the aerodynamic forees, we can for the purpose of this analysis assume

that

The individual values of g will be recovered from the solution of the flutter determinant, as will

be seen.

Flutter Equation

The generalized artificial damping force vector can now be included in Eq. (45) to obtain the

complete equations of motion for a wing in flutter.

MoO + i--gw2a_MOO + w_aMOq - wz.F..q- wit r [LCr B dx (47)
W Jo

This is an inhomogeneous ordinary differential equation in q. The inhomogenous term can

be dropped if we consider the generalized displacement to be composed of steady-state and time-

dependent components, such that, assuming again simple harmonic motion,

q = (lo + (le _t

Dividing the remaining terms by the natural frequency w2 and rearranging, the homogeneous

flutter equation becomes

[f_MD (U_ (l +ig)- M D E]- q = 0 (4s)
The the flutter conditions are found by setting the flutter determinant to zero for a range of

reduced frequencies ka and plotting the natural frequency w and artificial damping coeffient g with

respect to the reduced velocity, 1/kR. Flutter occurs at the reduced velocity where g goes to zero.
The flutter determinant is

det [_M D f w_-_R_ (1 + ig) - M D -
-_] (49)

t ] J

The components of the flutter determinant can be arranged in a convenient form that allows the

determinant to be solved in terms of a single complex polynomial. This is done by introducing the

parameter w_, which is a given natural frequency of vibration for a specific mode (usually taken to

be the first torsion mode). The components of this determinant are:

where

[(-_i-_lZ- (1 + _)] for/= jM D LX=,a,,

for i j

ajR 2

g = ..('-_'_ (1 +ig)

(50)

The natural frequency w and the artificial damping g are recovered from Z for each given reduced

frequency.
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Preliminary Results and Future Research

A flutter analysis was carried out for a Uniform Cantilever Beam. The result is compared with that

obtained by Goland Ref. [3]. The flutter velocity obtained by the code written was 305 mph while

Ref. [3] obtained 385mph. The discrepancy in the result may be attributed to some differences in the

aerodynamic model used and some slight numerical errors in Ref. [3]. The formulation developed

is quite general and can form basis for further work in this field. The structural model could be

extended to include nonlinearities. The aerodynamic model could be updated to a more accurate

doublet lattice method. To do a time-domain analysis for accurate results away from the flutter

point, a finite-state aerodynamics could be utilized.

Appendix

The elements of the matrices A, B and D contained in equation (42) are presented below.

Matrix A:

All = A12 = A13 -- Al4 = 0

A21 = A3z = ,441 -- 0

Aa4 = An = 0

A= = 7rpb4 -(a+ )Lo+(_+a+a2)Lh+Mo
1 a

A_ = -lrpba[(1 Jr 2a)La - Ma]

2ipab3cD(ao) ao
A24 =

k
1

A32 = lrpb a [L,:,- (2 + a)Lh]

A_ = _rpb2Lh

A,_ = pb 3 dCD
k _ da L,

2ipb co(o )
A44 =

k
Matrix B:

Bl = 0

B2 = k2 l+2a+ C_o

2r pb s
B3 = aok_

pbacD(ao)
B4 =

Matrix D:

Dzz

D_z

k 2

= Dl2 = DIa = D14 - 0

= D==D2s=D:M=0

11



D31 = D_=D33=D_=0

D41 = Du=0

D_4 =
k2

Ir_4a°(1
Du = _-_ ,_+2a)

pab'co(ao)
D44 =

k 2
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